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Abstract-In this paper, a new l-D/2-D mode1 is proposed for closed-loop thermosyphons with vertical 
heat transfer sections. This model improves the results of traditional I-D models for cases where : (i) mixed- 
convection effects are important in the heated and cooled sections of the loop; and (ii) heat losses (or 
gains) from the insulated portions of the loop are significant. This is achieved by iteratively coupling local 
results of 2-D numerical simulations of mixed-convection flows, performed in the heated and cooled 
sections, and a 1-D analysis. The proposed l-D/2-D model is validated by comparing its results with those 
of a complementary experimental study. The results include predictions and measurements of the average 
velocity in the loop, local wall temperatures in the heated section of the loop, and bulk temperatures of 
the fluid. The agreement between the model predictions and the experimental results is shown to be very 

good. 

1. INTRODUCTION 

CLOSED-LOOP thermosyphons are natural circulation 
loops in which fluid flow is induced by buoyancy 
forces. This paper is concerned with a numerical and 
experimental investigation of a closed-loop thermo- 
syphon schematically illustrated in Fig. 1. It con- 
sists of two vertical straight pipes joined together by 
two circular 180, bends, each of mean radius R. All 
pipes are of circular cross-section with an internal 
radius r,. The circulating fluid is heated by a constant 
and uniform heat flux, q (= P,/zDL,), in the heated 
section, and it is cooled in a cooling section main- 
tained at a constant wall temperature, T,,. Elsewhere 

around the loop, the pipes are insulated. Of particular 
interest and importance in this study are the mixed- 
convection phenomena occurring in such a loop, as 
elaborated by Welander [ 11, in the heated and cooled 
sections. 

Closed-loop thermosyphons have numerous engin- 

ecring applications : examples include buoyancy 
driven natural circulation loops in small nuclear-pow- 
ered systems for heating buildings [2] ; internal com- 
bustion engines [3]; emergency cooling of nuclear 
reactor cores [4] ; solar water heaters [5,6] ; and natu- 
ral convection heat exchangers [7]. The main advan- 
tage provided by closed-loop thermosyphons is that 
they can transport heat from a source to a sink without 
a pump. For the proper design of all these engineering 

systems, the modelling of closed-loop thermosyphons 
is important. Excellent review articles on the mod- 
elling of closed-loop thermosyphons have been pre- 
sented by Zvirin [4], Mertol and Greif [8], and Greif 
[9]. Therefore, only salient features of the relevant 
papers will now be described briefly. 

So-called 1-D models have been used to predict the 

FIG. 1. Schematic illustration of the closed-loop thermo- 
syphon used in the present study. 
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NOMENCLATURE 

A cross-sectional area of the pipe 7, mean wall temperature in the cooled 

C/J specific heat of the fluid at constant section 

pressure T W,hh local wall temperatures in the heated 

D internal diameter of the pipe. 2v, section 

.f Fanning friction factor. r,;(i)V’/2) T,--T,,, nodal temperatures evaluated at 

Gr, modified Grashof number, D~~~~q~~} V,,,k,. s I m-Y / 0 

CT</ Grashof number based on heat flux, u, I’ axial and radial velocity components 
,q~qD”,b’li,- u ovcratl heat loss coefficient [W mm ’ “C ‘] 

9 acceleration due to gravity V average velocity 
h heat transfer coefficient [W m -’ C ‘1 K average velocity in the heated section 

;i 
axial grid location V* non-dimensional average velocity. 
thermal conductivity of the fluid v, ; Vr,, 

L total length of the closed-loop I’& reference velocity, (~~~gAZ~8~~C~~)‘;~ 
L,-L, various lengths of the closed-loop x parameter used in equation (8). 

(Fig. 1) i12r&;p VAC, 
Ll number of grid points in the axial z axial coordinate. 

direction 
IVll Nusselt number, hD,k, Greek symbols 

P pressure P thermal volumetric expansion coefficient 
P* non-dimensional pressure AS length of an elemental control volume 

P, power input [W] AZ height difference between the middle of 
Pr Prandtl number, &,,/kf the heated and cooled sections (Fig. 1) 

Y heat flux [W m-‘1 I? length parameter, (L,/2) - (I/X) f 
Qr, Q?, Qz various heat losses in the loop [emX’-7/(l _e X’7)]L7 

Re Reynolds number, I/tf;v 0 angle of the control volume in the 
Re,,r reference Reynolds number, Vrc’,,Djv thermosyphon (Fig. 1) 
R radius of the 180. bends (Fig. I) p dynamic viscosity of the fluid 
I radial coordinate s’ parameter used in the s-momentum 

r, internal radius of the pipe equation 
S axial coordinate around the closed-loop P density of the fluid 

Jl-,yirl given values of the axial coordinate r, shear stress at the waft 

St,, modified Stanton number, UD!pV,,AC,, 4, dimensionless ambient temperature, 
T area-weighted mean cross-sectional t T., - ~,)l(q~~ik~) 

temperature R modified heat loss coefficient, U/p VAC,,. 

T, ambient temperature 

T Ti,.oi,, IX?” > inlet, outlet bulk temperatures Subscripts 

TX mean temperature in the closed-loop, CS refers to the cooled section 

ir,+ T,)i2 hs refers to the heated section. 

veiocity and temperature distributions in toroidal 

the~osyphons [IO, 1 I] and in closed-loop thermo- 
syphons with vertical heat transfer sections [12, 
131. In these I-D models, velocities and temperatures 
are averaged over the cross-sectional area of the pipe, 
and the flow and heat transfer are assumed to be fully 
developed inside the whole loop. Such models, which 
are based on the assumption of fully developed con- 
ditions throughout the loop, will be referred to as 
traditional 1-D models in this paper. As shown by 
Lewis et al. [14] and Mertol et al. [15], the validity of 
traditional I-D models becomes questionable for 
cases where buoyancy effects significantly influence 
the velocity and temperature profiles inside the loop. 

In an attempt to improve the accuracy of traditional 

i-D models, Durig and Shadday [16] used 2-D 
numerical simulations of mixed-convection flow to 
obtain estimates of the average friction factors and 
average heat transfer coefficients in the heated and 
cooled sections of closed-loop thermosyphons with 
vertical heat transfer sections. However, their 2-D 
numerical simulations were decoupled from the solu- 
tion to the I-D model. Such a decoupled l-D/Z-D 
approach is not very convenient. Furthermore, it 
could require numerous 2-D simulations, since the 
average velocity in the loop is not known u priori, 
and developing mixed-convection Aows have to be 
modeled in the heated and cooled sections. 

Lewis et al. [14] used local results of 2-D numerical 
simulations of mixed-convection flows to predict flow 
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rates in a thermosyphon loop comprised of two ver- 
tical tubes joined by upper and lower plenums. In the 

model of Lewis et al. [14], local values of the friction 

factor and of the mean cross-sectional temperature in 
the tubes are obtained numerically and then sub- 
stituted into a general 1-D momentum equation where 
the only unknown left is AZ, the height difference 
between the middle of the heated section and the 

middle of the cooled section (Fig. 1). However, their 
numerical simulations were performed with the para- 
bolic forms of the governing equations, thus limited 
to cases where mixed-convection effects do not induce 
a reversal of the flow in the tubes. 

2. PROPOSED l-D/2-D MODEL 

In this section, the assumptions used in the pro- 

posed l-D/2-D model are presented first. Then the l- 

D analysis used in the proposed model is reviewed. 
Following that, solutions of a traditional I-D model 
are presented concisely, for the loop shown in Fig. 1. 
Next, the governing equations of the 2-D models of 

the heated and cooled sections are presented. Finally, 
a brief discussion of a coupled solution procedure 
used in the proposed l-D/2-D model is given. 

2.1. Assumptions 
Another way to improve the velocity and tem- 

perature predictions is to numerically solve the com- 
plete 3-D governing equations. Lavine [17] has 

explored this avenue in a toroidal thermosyphon. Her 
results indicate that the computational cost (storage 
and CPU time) involved in such a calculation could 
be considerable. 

Experiments have been performed to ascertain the 
validity of the afore-mentioned models. Creveling et 
al. [18], Damerell and Schoenhals [ll], and Stern et 
al. [19] have studied experimentally the flow inside 
toroidal thermosyphons. Zvirin [4] and Vijayan and 
Date [20] have reported experiments performed on a 

small scale nuclear reactor operating under natural 
circulation. Hallinan and Viskanta [12] have con- 
ducted a series of experiments on the heat transfer 
from a vertical tube bundle in a natural circulation 

loop. The behavior of a rectangular closed-loop ther- 
mosyphon with vertical heat transfer passages, similar 

in shape to the one presented in this study, has been 
studied by Huang [21] and Huang and Zelaya [ 131. 
The results of these experimental studies indicate that 

traditional 1-D models are accurate when conditions 
approach the fully developed state throughout the 
loop. However, when experimental conditions are 
such that local natural convection effects are strong 

in the heated and cooled sections, the velocity and 
temperature profiles are distorted from their fully 
developed forced convection shapes, and the tra- 

ditional I-D models become inaccurate. 

The assumptions used in the development of the 

proposed l-D/2-D model of the closed-loop thermo- 
syphon depicted in Fig. 1 are the following: (i) the 

fluid is Newtonian, and in single phase; (ii) the flow 
is steady and laminar ; (iii) viscous heating is neg- 

ligible ; (iv) fluid flow and heat transfer are assumed 
to be 2-D and axisymmetric in the extended heated 
section (which includes the heated and post-heated 
sections) and the extended cooled section (which 
includes the cooled and post-cooled sections) ; (v) at 

the entrance to the heated and cooled sections, the 
flow is fully developed (Poiseuille parabola) and the 

temperature is uniform; (vi) the fluid properties are 

constant, and evaluated at the mean loop temperature 
7’, (= [T,+ T,]/2), with the use of the Boussinesq 
approximation in the treatment of the density; (vii) 
curvature effects and associated form losses are neg- 
ligible; and (viii) heat conduction in the pipe, and 

axial conduction in the fluid outside the extended 
heated and cooled sections, are negligible. 

2.2. One-dimensional analysis 
Application of the principle of conservation of 

momentum to an elemental control volume, in the 
context of 1-D flow throughout the loop, gives a bal- 

ance between the pressure force, the shear force on 
the pipe wall, and the gravitational force [lo, 221. 
Integrating this balance along path ‘s’ around the loop 
yields (Fig. 1) 

In this study, a new approach, with accuracy, com- 

plexity, and computational costs in between those of 
traditional I-D models and complete 3-D numerical 
simulations, is proposed to model closed-loop 
thermosyphons with vertical heat transfer sections. In 
this approach, the local results of 2-D numerical simu- 
lations of mixed-convection flows, performed in the 

heated and cooled sections of the thermosyphon, are 
coupled with a 1-D analysis, with a proper account of 
heat losses (or gains) from other sections of the loop. 

V* f(s) ds = r,g/? T(s) cos 0 ds (1) 

where v is the average velocity inside the loop, f is 
the Fanning friction factor, ri is the internal radius of 
the pipe, g is the gravitational acceleration, 6, is the 
angle of the elemental control volume with respect to 
the horizontal (Fig. I), T(s) is the fluid temperature 
in the cross-section of interest, and /l is the thermal 
volumetric expansion coefficient of the fluid. 

The remainder of this paper is divided into three In order to solve equation (l), values of f(s) and 
main sections : first, the governing equations and solu- Z’(s) need to be evaluated at all locations around the 
tion procedure of the proposed l-D/2-D model are loop. In the proposed l-D/2-D model, f’(s) and T(s) 
presented ; then. the experimental apparatus is values in the extended heated and cooled sections are 

described; finally, the results of the experimental obtained from the results of detailed 2-D numerical 
investigation are used to validate the proposed l-D/2- simulations (discussed in Section 2.4). In sections 
D model. other than the extended heated and cooled sections, 



f’(s) is set equal to Ib;‘Re, and T(S) is dctermincd by 
deriving and solving a I-D energy equation with a 
proper account of the heat losses (or gains) ; details 
arc available in ref. [22]. With these considerations. 
and with reference to Fig. I. the I-D momentum equa- 

tion (equation (I)) takes the following form 

s I, 

+ 

‘1 

~(.~)cosHdi-~~I),(J)du]. (2) 

In regions outside the extended heated and cooled 

sections, heat losses (or gains) arc accounted for 
through an overall heat loss coefficient, U (in W m ’ 
‘C ‘) : C’ is assumed constant, as the insulation level 

is the same everywhere and it constitutes the dominant 
thermal resistance. Using the section from sq and s5 
as an example, the corresponding temperature dis- 

tribution can be expressed as 

T(S) = (T,- T:,)e ‘I”- ‘J-t T,, (sJ < s < SJ (3) 

where 0 = U/pVAC,,, C,, is the specific heat of the 
fluid at constant pressure, p is the density of the fluid, 
and A is the cross-sectional area of the pipe. 

2.3. Traditional I-D model 

In traditional I-D models, the flow is assumed to 
be fully developed throughout the loop, so that 
,f’(s) = l6/Re everywhere. The temperature dis- 
tribution around the loop, T(s), is determined by 
deriving and solving the I-D energy equation, with 
adiabatic conditions assumed in sections other than 

the heated and cooled sections. In the heated and 
cooled sections, two sets of thermal boundary con- 

ditions, which arc identified as ~CISC (I) and MSP (2) 
in this paper. will be examined. For MSP (I). the 
thermal boundary conditions are: (i) constant heat 
flux in the heated section, and (ii) constant cooling 
flux in the cooled section. For ULNA (2). the thermal 
boundary conditions are : (i) constant heat flux in the 
heated section; and (ii) constant wall temperature in 
the cooling section with a thermally fully developed 
condition (Nu = 3.66). 

For ULS(I (I). with respect to the nomenclature pre- 

sented in Fig. I, T(s) is given by the following equa- 
tions : 

(4) 

for s1 < s < s, 

7-(s) = T, (5) 

and for .sx < s < .s? 

T(s) = T, (7) 

where P, is the power input, V is the average fluid 
velocity in the sections of interest, and L? and L, 

are the lengths of the heated and cooled sections. 

respectively. Temperatures T,-T,,,, which will be 

referred to as nodal temperatures, are evaluated at their 
corresponding axial locations. s-s,,) : T1 = T, = 

T, = T, = T,, and T, = T,, = T, = T1 = T,. 

For cuss (2), the equations in the heated and adia- 

batic sections arc the same as those for UISC (I). In 
the cooled section (s? < s < .sx) 

where 

T(s) = (T,-T,)e~ ‘(‘+‘,)+T,, (8) 

h2w, nk, Nu 
x = jVAC_ = jVAC~. 

P P 

with NM = 3.66, h is the heat transfer coefficient in the 
cooled section, k, is the thermal conductivity of the 
fluid, and T, is the constant wall temperature in the 

cooled section. 
Equation (I) can now be solved using the tem- 

perature distributions given in equations (5)-(8). 

Details of the solution can be found in the work of 
Bernier [22]. The end result, in its general form, which 
includes CCIXJS (1) and (2). is 

where 

s=O for ~N.SP ( I ) 

L, 1 e .\ /.. 
E= _ 

2 
x; + l _e~ \, i L, for ~(I.FC (2) 

and AZ is the height difference between the middle of 
the cooled section and the middle of the heated 

section, as shown in Fig. I. For USC (2), i: can be 
regarded as a correction factor to account for the 
exponential variation of the fluid temperature in the 
cooled section. 

2.4. Two-dimensional models in the extended heuted 
und cooled sections 

The calculation domain as well as the boundary 
conditions for the extended heated and cooled sec- 
tions arc prcscntcd in Figs. 2(a) and (b), respcctivcly. As 
shown in both figures, the calculation domains arc 
not restricted only to the heated or cooled sections, 
but include sections downstream of the heated and 
cooled sections. These ‘post’-sections are included in 
the calculation domain because both the velocity and 
the temperature profiles remain distorted from their 
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FIG. 2. Calculation domain and boundary conditions used in In addition to the governing equations, boundary 

the two-dimensional numerical simulations of the proposed conditions are needed to complete the mathematical 
model : (a) the extended heated section ; and (b) the extended model. With reference to Figs. 1 and 2, these boundary 

cooled section. conditions are 

fully developed shapes for some distance after the 

heated or cooled sections. 
In the extended heated and cooled sections, fluid 

flow and heat transfer are governed by the Navier- 

Stokes equations, the continuity equation, and the 
energy equation, all in cylindrical coordinates. As dis- 
cussed in the work of Bernier [22], elliptic forms of 
these equations are required when flow reversals occur 
and/or axial conduction in the fluid is significant: 
otherwise, parabolic forms of the governing equations 
are adequate, and more economical to use. In this 

paper, however, only the elliptic forms of the govern- 
ing equations will be presented. 

With the assumptions given earlier, the elliptic 

forms of the governing equations are 

Continuity equation 

1 t?(w) 

r L?r 

r-momentum equation 

+g=o (10) 

z-momentum equation 

where 5 = 1 for the cooling in downflow case, and 

5 = - 1 for the heating in upflow case. 

Energy equation 

pCPIL1;+U!J=;; 

(13) 

where u and v are the axial and radial velocities, 

respectively. Equations (lo)-(13) are presented in a 
general form allowing for variable p and k,. However, 

in the momentum equations, terms such as 
[(apj&)(au/&)], which are usually present when p is 
not assumed constant, have been dropped: over the 
range of parameters investigated in this work [22], 
they were found to have no perceptible influence on 
the results. 

Inlet boundary conditions 

For heating in upflow For cooling in downflow 
s = S? s = s, 
z=o z=o 

u = 2v[l -(r/rJ’] u = 2v[l -(r/r,)*] 

T= T, T= T, 

(14) 

Boundary conditions in the heated and cooled sec- 

tions 

For cooling in 
For heating in upflow 

s2 < s < s, 
O<z<L, 

downflow 
s, < s < sg 
O<z<L, 

at r = r, 

T= T, 

u = 0, v = 0 

aT 
-=O 
ar 

at r=O I i 
aT 
-=O 
ar 

au a0 au 
5’ 

0, z=o $CO, $0 

(15) 



Boundary conditions in the post-heated and post- 
cooled sections 

For heating in upflow For cooling in downflow 
sj < .s < SJ .sx < s d s<, 

Lz < - < L,+L, l’, < : < LT+I>* 

I iiT 
(27rr,)kr~- = - U(T- T,) 

at I’ = f, c?r 

at r=O 

(16) 

Outlet boundary conditions 

For heating in upflow For cooling in downflow 
s = sq s = .v ‘1 
Z = L2+LI Z = L,+L, 

(17) 

In equation (16), U is an overall heat loss coefficient 
(in W m _ ’ ‘C ‘) and T, is the ambient temperature. 

2.5. Coupled solution of the proposed i-D/2-D model 

The values off(s) and T(s) in the extended heated 
and cooled sections are determined numerically, and, 
therefore, they are discrete values prevailing over cer- 
tain finite distances, As. Thus, the integrals related to 
the extended heated and cooled sections in equation 
(2) can be replaced by summations. Furthermore, the 
remaining integrals in equation (Z), pertaining to 
regions other than the heated and cooled sections, can 
be solved using the temperature distributions given by 
equations similar to equation (3). With these con- 
siderations, the final form of the I-D momentum 
equation of the proposed I -D/2-D model is 

+ 
CT, -Cl 

n (I-P’)+T,L, 

i ,.I 
(T,- T,) 

+ 1 TII,,,As.i- n (1 -c G’ ,) 
/m I 

where the subscript ‘i’ refers to a particular grid 
location and L1 represents the total number of grid 
points in the axial direction, in each of the extended 
heat transfer sections. The Fanning friction factors, 
f;,,, and ,J,,,(, and the mean cross-sectional tempera- 
tures, T,,.+ and 7;.,,, are obtained by using suitable 
nutnerical approximations of 

,fbs(.s) or.fi:,(s) = --. ,i -7 
p v-2 (19) 

i T(r, .s) dA 

cw 

Equation (18) can be further expanded to include 
form losses in the loop, by adding an equivalent length 
of pipe, L,,, to the first term on the left-hand side of 
the equation (. . .L,t+2xR+L,). In addition, modi- 
fications to account for different radii in the various 
sections of the loop can be incorporated. Details are 
available in the work of Bernier [22]. 

In this work, the 2-D numerical simulations of 
mixed-convection flows in the extended heated and 
cooled sections were carried out using the well-estab- 
lished finite-volume method of Patankar [23]. The 
SIMPLEC procedure of Van Doormaal and Raithby 
[24] was used to solve the discretized equations pro- 
duced by this finite-volume method. The solution of 
equation (18) requires inputs from 2-D numerical 
simulations which themselves depend on I’. There- 
fore, equation (IS) and the 2-D numerical simulations 
in the extended heated and cooled sections have to be 
carefully decoupled and solved iteratively to obtain I/ 
and the temperature distribution around the loop: 
details are given in ref. [22]. 

3. EXPERIMENTAL APPARATUS 

3.1. Ouerali design 
A closed-loop thermosyphon with vertical heat 

transfer passages was specially designed and con- 
structed for the present investigation. It is presented 
schematically in Fig. 3. It consists of two sets of ver- 
tical Plexiglas pipe sections joined together by two 
circular 180” bends, which provide a smooth tran- 
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DIMENSIONS (m) 

FIG. 3. Schematic of the experimental closed-loop thermosyphon. 

sition from one vertical branch to the other with a 
minimum of form losses. As indicated in Fig. 3, the 
lengths of the heated and cooled sections are 0.664 

and 0.612 m, respectively, and the distance between 
the centers of these two sections, AZ, is 0.294 m. The 
total circulation length of the closed-loop is 6.2 m. 
The nominal internal and external diameters of the 
pipes are 19.05 and 25.4 mm, respectively, except in 
the pre-heated, heated, and post-heated sections, 

where a gold-film is attached to the inner surface of 
the pipe, and the internal diameter is equal to 18 mm. 
Distilled water is used as the heat transfer fluid, and 
the loop has a volumetric capacity of about 1.75.1. 
The loop is open to the atmosphere at the top, via a 
small expansion chamber, shown in Fig. 3. The whole 

assembly was insulated with a foamed-plastic pipe 
insulation (6 cm thick, k = 0.04 W m- ’ “C ‘). 

As shown in Fig. 3, two bulk temperature measure- 
ment sections are used : one, labelled as the inlet bulk 
temperature measurement section, is located at the 
left end of the bottom 180” bend ; and the other is 

located at the right end of the upper 180” bend, and 
labelled as the outlet bulk temperature measurement 
section. Each of these sections consists of a Plexiglas 

spacer with five fine (36 gauge) Type-E thermocouples 
located along the pipe diameter. Each thermocouple 
measures the temperature of the fluid flowing inside 
the loop at that particular location. The inlet and 
outlet bulk temperature measurements, along with the 
net power input measurement and estimates of heat 
losses (or gains), were used, as will be shown later, to 
obtain the average velocity inside the closed-loop. 

The cooled section is a double-pipe heat exchanger, 
designed to provide an essentially constant and uni- 
form wall temperature condition on the inner pipe 
made of copper. Cooling water, supplied by a 20-l 

constant temperature bath (Neslab, model RTE- 
220A), was circulated in the annulus of the cooled 
section at a flow rate much greater than the flow rate 
inside the closed-loop, in order to approximate the 
uniform wall temperature condition on the inner pipe. 
The inner pipe wall temperature uniformity was con- 
tinuously monitored using three Type-E thermo- 
couples. Typically, in all runs, the temperatures 
measured by the three thermocouples were all within 

1°C of each other [22]. 
The pre-heated, heated and post-heated sections are 

located on the left-hand side of th; loop. These three 
sections are nominally identical. Each section is com- 
posed of a Plexiglas pipe, with an internal diameter of 
19.05 mm and an external diameter of 25.4 mm, in 
which a thin semi-transparent gold-film electrical 
heater has been glued on the inner surface. The result- 

ing internal diameter of these sections is 18 mm. 
The heated section was the only one energized dur- 

ing tests, and it was instrumented with thermocouples 
to measure wall temperatures. The pre-heated and 
post-heated sections were built to ensure that the 
internal pipe diameters upstream and downstream of 
the heated section would be identical to the internal 
diameter of the heated section. The design and con- 
struction details are given elsewhere by Bernier [22]. 
In the heated section, holes were drilled through the 
Plexiglas walls to accommodate thermocouples for 



wall temperature mc3surcrnents. It should also be 
noted that the length of the straight pre-hcatcd section 
cxceedcd the Langhaar cntrancc length csiimatc [25J 
in all experiments. Furthermore, axial conduction in 

the pipe wall and in the fluid was negligible in all 
cases [22]. Thus the flow could be assumed to be fully 

developed at the entrance of the heated section. 

3 2.1 . Tmzpcr~4ttrr~~ 112(‘(4surenlcrzf.s. The chromei- 
constantan (Type E) thermocouples used in this study 

were connected to a data acquisition unit (Hewlett- 
Packard, model 3497A). All thermocouples located in 
the heated section were individually calibrated against 

a calibrated quartz thermometer (Hewlett-Packards 
model 2804A). Based on these results. the uncertainty 
in the temperatures measured with the calibrated 

thermocouples was estimated at t_ 0.05 C [22]. 
The ambient temperature was measured using a 

thermocouple located at the mid-height of the closed- 
loop. In order to reduce radiation errors, the 
thermocouple was shielded by inserting it into a 6 mm 
brass tube. 

Final wall temperature measurements in the heated 

section were taken with 46 thermocouples glued inside 
the Plexiglas pipe of the heated section. Typically, two 
the~ocouples were positioned 180 apart in each axial 
measuring cross-section. Uncertainties in the axial 
and radial positioning of the thermocouples were esti- 

mated at i 0.5 and rt: 0.1 mm, respectively. 
3.2.2. Inlet und outlet hulk temperature mea.rurt~- 

mcuts. T, ,,, and T,,,,,,, The fluid temperature. density. 
and velocity profiles are needed to determine the bulk 
temperature. However, if the temperature is uniform 
at a given cross-section, then the bulk temperature is 
simply equal to that temperature, without the need to 
measure the velocity profile. In this work, the tem- 
perature uniformity in the inlet and outlet bulk tem- 
perature measurement sections was continuously 
monitored during all tests, and, typically, all five 
thermocouples were well within 0.3 C of each other 
[22]. Thus the inlet and outlet bulk temperatures 
were assumed equal to the arithmetic average of the 
five thermocouple measurements. 

As shown in Fig. 3, the inlet and outlet bulk tem- 
perature measurement were not made immediately at 
the inlet and outlet of the heated section. This was 
done for two reasons: first, had the inlet bulk tem- 
perature measurement been made at the inlet of the 
heated section, the immersed thermocouple wires 
could have affected the inlet velocity profile. Second, 
because the temperature profile at the outlet of the 
heated section is not uniform, an outlet bulk tem- 
perature measurement at that location would have 
required, based on the foregoing discussion, a knowl- 
edge of the velocity profile. Instead, the outtet tcm- 
perature measurement was located away from the out- 
let of the heated section, after the top 180” bend, so 
as to get a mom uniform fluid temperature over the 
cross-section of the pipe. 

32.3. ~-fWf4~)!L/f r:r/of’it~~ ttlf'ffSLf)'f'ttfi'rf~S. In this work. 
the average velocity inside the closed-loop was cvalu- 
ated using the following relationship : 

where Q?, Qr and (2: represent heat losses, from s, to 

.Y?, from .Y? to .s3, and from .vz to .sh, rcspectivcly. 
Electrical power was provided to the heated section 

by a DC power supply (Sorensen. model DCR300- 
3B). Current was measured using a multimeter (Hew- 

lett-Packard, model HP3478A, accuracy = & I mA). 
Voltage measurements across the heated section were 
obtained using a separate multimeter (Kcithley, 

model 195A, accuracy = f 33 mV). 
Since one of the main criteria of comparison 

between the predictions of the proposed l-D/2-D 

model and the experimental results is the average vel- 
ocity. a thorough in situ calibration of the average 
velocity measurements was undertaken. according to 
the lecllnique recommended by the International 
Standard Organization [26]. For the calibration tests, 
the cooled section was removed and replaced by flex- 
ible pipes which were conncctcd to a constant head 
tank and to a bucket. The constant head tank supplied 
a constant flow rate of water to the loop. This flow 
rate was determined by llleasuring the mass of water 
accumulating in a bucket over a certain time interval 
measured by a stopwatch. The calibration procedure 

consisted of comparing, under steady-state con- 
ditions, the average velocity obtained using equation 
(21) with the one given by the stopwatch--bucket 
method. Details of this cdhbrdtion are given by Bern- 
ier 1221, where the uncertainty in the experimentally 
determined value of V (using equation (21)) is esti- 

mated at k 5%. 

4. RESULTS AND DISCUSSION 

The governing equations of the proposed l-D/Z-D 

model have been non-dimensionalized by Bernier [22]. 
For the closed-loop thermosyphon shown in Fig. 

1, five independent dimensionless parameters 

emerge from this non-dimensionalization : Gr,, 
(= ~3~~q~~,~‘~~~k~.). a moditied Grashof number; St,,, 
( = UDJp V,,,AC’,,), a modified Stanton number ; Re,,, 

( = V,,,D/%), a reference Reynolds number; Pr 
(= &‘,Jk,), the Prandtl number; 4, (= [T.,-T,],l 
[qD/k,]), a dimensionless ambient temperature. In 
these parameters. I’,i is the average fluid velocity in 

the the~osyphon as predicted by case I of the 
traditional I-D analysis (equation (9)). 

In order to test the proposed l-D/2-D model. it was 
decided to compare its results against data obtained 
with the experimental apparatus described in Section 
3, for operating conditions which produce strong 
mixed-convection effects. In all. eight different runs, 
summarized in Table 1, were considered : for each of 
thcsc runs, the results of the corresponding numerical 



Closed-loop thermosyphon 2971 

simulations revealed the presence of flow reversals in 
the heated and cooled sections. The power input was 
varied from 9.83 to 74.58 W (Gr, = 1957-5078). The 
average wall temperature in the cooled section, T,, 

varied from 13.2 to 26.9”C. As mentioned earlier, 
the loop was well insulated, with St, varying from 
0.34 x lo- 3 to 0.88 x lo- 3, and 4, varying from 0.261 
to 0.540. In each experimental run, the conditions 
were considered to be steady when the measured aver- 
age velocity in the loop did not vary by more than 
& 1% over a time period equivalent to at least twice 
the time required for a packet of fluid, travelling at 

the average velocity, to complete one revolution 
around the loop. 

Form losses, associated with secondary flows in the 

180” bends, were accounted for by adding an equi- 
valent length of pipe [22]. Approximate values of the 

equivalent length of pipe were obtained using the loss 
coefficients of Blevins [27]. Because of the smoothness 
of the 180” bends, these form losses amounted to just 
a few percent of the total frictional losses in the loop. 
Therefore, they had an essentially negligible impact 
on the determination of V. 

As mentioned earlier, the experimental loop has 

two slightly different radii: ri = 0.009 m in the pre- 
heated, heated, and post-heated sections, and 
r, = 0.0095 m elsewhere. In the proposed l-D/2-D 
model, these two radii were handled by solving the 
fundamental momentum equation (equation (1)) in 

the same manner as that described in Section 2, with a 
proper account of the location of the two radii around 
the loop. The resulting equation, which is presented 
in ref. [22], is very similar in form to equation (18). 
This equation was solved for V,, the average velocity 
in the heated section, using the same coupled solution 
procedure described earlier in Section 2.5. The equa- 
tion obtained for the traditional 1-D (equation (9)) 
was also re-derived to account for the two radii of the 
experimental loop [22]. 

The 2-D numerical simulations in the extended 

heated and cooled sections were performed with a 
non-uniform grid spacing in both the radial and axial 
directions, with a greater concentration of grid points 
in regions where steep gradients are expected. Pre- 
liminary numerical simulations were undertaken in 
the extended sections to determine the grid spacings 
that provided grid-independent results with the pro- 
posed l-D/2-D model. In the axial direction, it was 
found that in order to get an essentially grid-inde- 
pendent solution, 40 and 30 grid points were necessary 
in the heated (and cooled) and post-heated (and post- 

cooled) sections, respectively. Figure 4 presents some 
of the results of a grid independence check in the 
radial direction. The conditions used for this grid 
check are those of experimental run No. 8 (Table I), 
which represent the most demanding conditions to 
simulate. In Fig. 4, the variation of axial velocity with 
radius at the mid-point in the heated section is plotted 
for three different radial grid spacing. Based on these 
and other similar results [22], it was decided to use 10 
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FIG. 4. Some grid independence results for run No. 8 : non- 
dimensional velocity profiles at the mid-point in the heated 
section, plotted as a function of the non-dimensional radial 

coordinate for three different grid spacings. 
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FIG. 5. Average velocity in the heated section of the closed- 
loop thermosyphon : comparison between experimental data 

grid points in the radial direction, as this grid spacing and the results of the proposed l-D/2-D model. 

provided an essentially grid-independent solution. 
Figure 4 also shows that the distortion, from the 

inlet parabolic shape, of the velocity profile in the 
heated section is important. This is because the buoy- 

ancy forces become relatively important when com- 
pared with the inertia forces (high GrJRe’) [28]. 
Therefore, the flow tends to accelerate in the region 
of the highest temperature (in the vicinity of the wall). 

To satisfy local mass conservation requirements, the 
increase in fluid velocity and associated mass flow rate 
in the vicinity of the wall is fed by fluid drawn from 
the central region of the pipe. The end result is a steep 
velocity gradient at the wall, which implies a high 
Fanning friction factor, and a negative axial velocity 

(flow reversal) in the center of the pipe. 
Suitable lengths of the post-heated and post-cooled 

sections for both geometries were determined based 
on preliminary simulations. These post-sections were 
considered to be long enough when the value off Re 
at the end of the post-heated sections was within 
approximately 20% of ,f‘Rr = 16. This criterion 

appears, although no optimization studies were 

(< 1.5%) when calculations were performed with 
variable properties [22]. 

The diagonal line in Fig. 5 represents a line of 
perfect agreement between the results of the proposed 
model and the experimental measurements. The error 
bars are the uncertainties in the measured average 
velocity (f 5%). They are based on a calibration of 
the average velocity measurement procedure, as 
described earlier. The agreement between the pro- 
posed model and the experiments is very good: the 
line of perfect agreement lies totally within the range 
of the experimental uncertainty bars. Therefore, the 
proposed l-D/Z-D model can be considered to be 

validated over this range of conditions. 

against Gr, 

Figure 6 presents the results of a comparison 
between CUSC’S (1) and (2) of the traditional I-D model. 

and the proposed l-D/2-D model for the eight runs 
presented in Table 1. Non-dimensional average vel- 
ocities in the heated section, V* = VJ V,,,-, are plotted 

undertaken, to be a reasonable compromise between 

and post-cooled sections were the same as the lengths 
of the heated and cooled sections, 0.664 and 0.612 m, 

the accuracy of the model and computational cost. 

respectively. 

Using this criterion, the lengths of the post-heated 

4.2. Average oelocity in the heated section 

Figure 5 presents a comparison between the exper- 
imentally determined average velocity in the heated 
section of the closed-loop thermosyphon, V,, and the 
corresponding predictions of the proposed l-D/2-D 
model. These data are also presented in Table 1, where 
all the results for a particular run were obtained by 
assuming constant properties evaluated at the mean 

1.0 - ‘- 

0.9 - ‘\ 1 

0.8 L * I 
2000 3000 4000 5000 

loop temperature, as determined by the proposed G’,” 

1 -D/2-D model. It should be noted in this context, that FIG. 6. Variation of V* as a function of Gr,,,: comparison 
the average velocities were only marginally affected between the traditional and proposed I-D/2-D models. 
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As indicated in Fig. 6, for case (I) of the traditional 
I-D model, V* is independent of Gr,,. It should be 
noted again that the internal radius of the heated 
section (and pre- and post-heated sections) is different 
from that in the other sections of the loop : therefore, 
V, Z Vrcr. It can also be seen that the results for case 
(2) of the traditional 1-D model tend towards those 
of L*U.SB (1) for large values of Gr,. This is because as 
Gr,, increases, V, increases and X decreases. Thus. the 
argument of the exponential function in equation (8) 
decreases, which results in a temperature profile, in 
the cooled section, which tends towards a linear 
profile. Since case (1) produces a linear temperature 
variation in the cooled section, it is not surprising to 
see that the Y* results of casrs (I 1 and (2) tend towards 
the same value as Gr, increases. 

The general trend of the curve for the proposed 
l-D/Z-D model indicates that V* decreases as Gr, 
increases. For small Gr,, the results for cases (1) and 
(2) of the traditional I-D model are lower than the 
ones predicted by the proposed 1 -D/Z-D model. Con- 
versely, for high Gr,,,, the results for cases (1) and (2) 
are higher than the results of the proposed l-D/2-D 
model. These discrepancies between the results of 
cases (I) and (2) of the traditional 1-D analysis and 
the proposed l-D/Z-D model are mainly due to two 
factors : (i) the inability of the traditio~l I-D models 
to handle heat losses (or gains) from the insulated 
portions of the loop; and (ii) the inadequacy of the 
fully developed flow and heat transfer assumption in 
traditional I-D models when strong mixed-convection 
effects are present in the heated and cooled sections. 

The effects of the first of these two factors is shown 
by looking at the results of runs No. 1 and No. 2 
(Table I), for Gr, x 2000. These two runs have 
approximately the same power input (9.83 and 9.97 
W) but because of different wall temperatures in the 
cooled section and ambient temperatures, the value 
of +,_ is almost twice as large for run No. I than for 
run No. 2. This, in turn. influences the amount of heat 
losses (or gains) from the insulated portions of the 
loop. Indeed. the amount of heat gain from the insu- 
lated portions of the loop is equal to 2.30 and 0.81 W 
for runs No. 1 and No. 2, respectively. Thus, the 
amount of heat removed in the cooled section (column 
3 in Table I), which is the power input in the heated 
section plus the cumulative amount of heat gain 
around the loop, is equal to 12.13 and 10.78 W for 
runs No. 1 and No. 2, respectively. This changes the 
temperature distribution in the loop and the value of 
Y* [22,29], as evidenced by the sharp decrease in Y* 
from run No. 1 to run No. 2 for the proposed l-D/ 
2-D model. Since the traditional 1-D models do not 
account for heat losses (or gains), it is not surprising 
to see differences in the values of V*, between runs 
No. I and No. 2, obtained with the proposed l-D/ 
2-D model and cases (I) and (2) of the traditional 
1 -D model. 

Heat gains are also present for high values of Gr, 
(Table I), and they are partly responsible for the 

discrepancy between the values of V* predicted by the 
proposed l-D/2-D and traditional 1-D models. Strong 
mixed-convection effects also cause this discrepancy. 
For example, for run No. 8 (Gr, = 5078), Fig. 4 shows 
that the axial velocity distribution in the heated sec- 
tion is greatly distorted from its fully developed para- 
bolic shape. A similar distortion is also present in the 
cooled section [22]. Because of these distortions, the 
value of J’Re is far from its fully developed value of 
16. Indeed, for run No. 8, the value off Re is equal 
to 78 at the mid-point in the heated section and the 
average value off Re for the entire loop is 33.1 [22]. 
Consequently, because of these high frictional losses, 
the F* predicted by the proposed l-D/2-D model is 
smaller than the ones predicted by the tradit~onai l- 
D models. The strong mixed-convection effects in the 
heated and cooled sections also affect the temperature 
distribution, T(s), in the loop and the determination 
of the average velocity [22]. However, the increase in 
the value off Re is the dominant factor here. 

As can be seen in Fig. 6, the curves for c(i.se (2) of the 
traditional 1-D mode1 and for the proposed l-D/Z-D 
model do not vary smoothly as Gr,, increases. This 
is due to the fact that the thermal properties were 
evaluated, for each Gr,, based on the mean loop 
temperature for that particular run. Since the mean 
loop tem~rature varied from test to test, depending 
mainly on the value of T,, (and to a lesser extent on 
71,), the thermal properties varied slightly from one 
test to the other. For example, runs No. 4 and No. 5 
(near Gr, z 4000 in Fig. 6) had approximately the 
same power input to the loop, 39.84 and 39.89 W, 
respectively. but the wall temperatures in the cooled 
section were different, 18.85 vs 15.7O”C. Conse- 
quently, the mean loop temperature and the thermal 
properties were not the same, which, in turn, influ- 
enced the value of V* as evidenced by the ‘dip’ in the 
curve for case (2) near Gr,,, z 4000. The same argu- 
ment can be made to explain the behavior of the 
curve of the proposed I-D/2-D model in the vicinity 
of Grn, c 4000. 

4.3. Axial wall temperature variations in the heated 
section 

The local variations of the wall temperatures in the 
heated section are presented in Figs. 7(a)-(c) for three 
different power inputs as a function of the non-dimen- 
sional coordinate, z/D. As indicated earlier, the uncer- 
tainty in these experimental results was estimated at 
f0.05’C. The uncertainty associated with the pos- 
itioning of the thermocouples was kO.5 mm. Both of 
these Llncertainty values are well within the diameter 
of the dots presented in Fig. 7. The solid lines plotted 
in Figs. 7(a)-(c) refer to the local wall temperatures 
predicted by the proposed l-D/2-D model and were 
obtained by assuming constant fluid properties evalu- 
ated at T,,,. 

As can be seen, the agreement between the Iocal 
predictions of the proposed model and the exper- 
imental measurements is quite good at low power 
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Fw. 7. Axial variation of wall temperatures in the heated 
section: comparison between experimental data and the 

results of the proposeti I-D/Z-D model. 

levels, Figs. 7(a) and (b), but there is a deterioration in 
the level of agreement at high power, Fig. 7(c). In all 

three cases, the measured wall temperatures are higher 
than the numerical predictions in the entrance region 
of the heated section, at z/D sz 0. As reported by 
Bernier 1221, it is believed that, under the conditions 

of thermal expansion and contraction experienced by 
the heated section, the electrical link between the gold- 
film and the copper electrodes weakened with time, 
causing a local increase in the value of the electrical 
resistance at the electrode-film interface. This created 
a greater-than-average heat flux and higher-than-nor- 
mal wall temperatures, as seen in Fig. 7, in the vicinity 
of these locations. There also appears to be a slight 
defect in the gold-film near z/D c 18, as shown by the 
results in Fig. 7(c) f22]. 

4.4. Bulk tetnprratures 

Inlet and outlet bulk temperatures were measured 
at two locations in the experrmental apparatus (Fig. 
3). These measurements, along with the cor- 
responding predictions of the proposed l-D/2-D and 
the traditional I-D models, are presented in Table 1. 
As can be seen, the values of Tb,,n and Tb.out predicted 
by the proposed l-D/Z-D model are in good agree- 
ment with the experimental data ; the maximum 
difl’erence is 0.25”C for run No. 8. This is in conrrast 
with the results of case (2) of’the traditional I-D model 
which do not compare favorably with the exper- 
imental data. For example, for run No. 8, there is a 

10.7’ C difference in the value of 7;, ,/1 predicted by 
(wsc (2) and the one measured expcrinl~nt~~il~. This 
emphasizes. once more. the inability ol‘ traditional I- 
D models to make accurate predictions in the presence 

of strong mixed-convection effects and heat losses (or 
gains). 

5. CONCLUDING REMARKS 

A new approach to the modeling of closed-loop 

thermosyphons with vertical heat transfer sections has 

been proposed. It involves an iterative procedure 
which couples the local results of 2-D numerical simu- 
lations performed in the extended heated and cooled 
sections with those of a I-D model. The outputs of 

the solution include the average velocity in the closed- 
loop, 2-D velocity and temperature fields in the 

extended heated and cooled sections, and nodal tem- 

peratures around the loop. 
In comparisons with results of a complementary 

ex~rimenta1 study, the proposed 1 -D/2-D model suc- 
cessfully predicted the average velocity and bulk tem- 
peratures at two locations in the loop, over the range 
of power inputs studied in this work, from 9.83 to 
74.58 W (Gr, = 19.57-5078). In addition, the I-D/2-D 
model put forward in this work was able to predict 
fairly well, especially at low power levels, local wall 
temperature measurements made in the heated section 

of the closed-loop thermosyphon. 
A comparison between the proposed l-D/2-D and 

traditional I-D models indicated that these latter 
models can be quite inaccurate when strong mixed- 
convection effects are present in the heated and cooled 

section of the ioop and/or when heat losses (or gains) 
from the insulated portions of the loop are significant. 
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MODELE lD/2D ET RESULTATS EXPERIMENTAUX POUR UN THERMOSIPHON A 
BOUCLE FERMEE AVEC DES SECTIONS VERTICALES DE TRANSFERT THERMIQUE 

Resume-On propose un nouveau modtle lD/2D pour des thermosiphons B boucle fermee avec des sections 
verticales de transfert de chaleur. Ce modtle ameliore les n&hats des modiles traditionnels 1D pour les 
cas oti : (i) les effets de convection mixte sont importants pour les sections chaudes et froides de la boucle ; 
et (ii) les pertes (ou gains) de chaleur dans les parties isolees sont signi~catives. Ceci est obtenu en couplant 
iterativement les resultats locaux des simulations numeriques 2D des ecoulements de convection mixte dans 
les sections chrudes et froides, avec une surface ID. Le modile est valid6 en comparant ses resultats avec 
ceux d’une etude experimentale complementaire. Les resultats incluent les predictions et les mesures de 
vitesse moyenne dans la boucle, les temperatures de melange du fluide. L’accord entre les predictions du 

modtle et les r&hats experimentaux se revele t&s bon. 

EIN-/ZWEI-DIMENSIONALE NUMERISCHE UND EXPERIMENTELLE 
UNTERSUCHUNG EINES SCHLEIFENFORMIGEN THERMOSYPHONS MIT 

SENKRECHTEN WARMEUBERTRAGUNGSSTRECKEN 

Z~~menfa~~g-In der vorliegenden Arbeit wird ein neues ein-~zwei-dimensionales Model1 fiir einen 
~hleifenf~rmiaen The~osvDhon mit senkrechten W~rme~~rtra~un~sstrecken vorgestellt. Dieses Model1 
liefert fib folg&de Fiiile bessere Ergebnisse als herkiimmliche eindimensionale Modelle : (i) wenn in Heiz- 
und Kiihlzone der Schleife Einfliisse der Mischkonvektion wesentlich sind; (ii) wenn Wlrmeverluste (oder- 
gewinne) in den isolierten Teilen der Schleife bedeutsam sind. Dies wird durch eine iterative Kopplung 
iirtlicher Ergebnisse zweidimensionaler numerischer Simulationen der Mischkonvektionsstrimung in der 
Heiz- und der Kuhlzone mit einer eindimensionalen Analyse ermittelt. Das vorgestellte ein-/zwei-dimen- 
&male Model1 wird durch Vergleich mit entsprechenden Ergebnissen einer experimentellen Untersuchung 
validiert. Folgende GriiDen werden vorausbercchnet bzw. gemessen : mittlere Geschwindigkeit in der 
Schleife, iirtliche Wandtem~raturen in der Heizzone, Kerntemperaturen des Fluids. Die ~bereinstimmung 

zwischen Berechnung und Messung erweist sich als sehr gut. 



OfiHOMEPHAR (ABYMEPHAR) MOAEJJb M 3KCIIEPMMEHTAJJbHbIE PE3Y_RbTATbI 
AJIX TE~MOC~~OHA C 3AMKHYTbIM KOHTYPOM kt B~PT~KA~bHbI~~ 

TEJl~~OBMEHHbIM~ CEK~~~M~ 

Am#oTa~+-~pe~nOxeHa HOBZ,ll OL,HOMepHaX (nl3yMepHWl) MO,WIb iLn% EpMOCH@OHOB C YdMKHYTbIM 

KOHTYPOM n BepTHKWIbHbIMR TWIJI006MeHHbIMH CeKUITRM&i. &iHHa% MO,.WIb AWT 6onee TOYHbIe pe3y- 

,,bTaTbI, WM TpaLUlUAOHHble ODHOMepHbIe, B C,IyWFIX, KOTLV: (i) 3@@2KTbI CMWIaHHOii KOHBS2KWU 

IIBJIR~TCII cyUpm3e~~b1~u B HarpeBaehfoti H oxnamnaehsofi cerwmx romypa II (ii) nwrepa (ma 
f,pRpaWeH@ Te”ila “a A3O~BpOBiU,Hb,X ‘,%WTKaX KOHTypa IBWUOTCkl 3Hii’IllTenbHbIMII. %O LIOCTM- 

,-df2TCII ~0~~~~~~~~ HTepaUHa npr?l pWZY‘2Te ~ByMepUbIX CMel~aHHOKOH~~KTABUbIX TeYeHEii B HWpeBZWS- 

MO% U OX.l,d~fiZMOii CeKQ&S,X C ,‘%TOM pe3jVIbTaTOB OiWOMepHOrO aHanH3a. ~~~KT~~H~~Tb HOBOG 

MOL[‘ZJIII “pOBepWZ’l_C,, RyTeM CPiiBWHWl nO,IyW?HHbIX Ha ee OCHOBe pe3yJIb’EY~OB C LlaXHbIMiZ 3KCIIepEF 

MeHT&“bHO,.O MCCne~OBaHHR &WI CpnH& CKOPOCTM B KOHTYpe, nOKWIbHblX TeMlIepaTyp B HWpW%MOi 

CeKQHli KOHTypa M CpeflHeMaCCOBbIX TeMIEpaTyp XWIKOCTA. nOKa3dH0, ST0 paC’ETb1 II0 UpWJlWWHHOii 

MO&eJ,H O%Hb XOpOrVO COrJELCyWl’Cfl C 3KCUePRMeATaflbHblMM YilHHMMW. 


